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[P(Me)3]2[C3(C6H5)3]]
 + 7 and 2.06 and 2.10 A in the [[endo-

and [[e.vo-C4(C6H5)4(OC2H5)]Pd(M2-Cl)]2 complexes, res­
pectively.3411 The C—Cl bond lengths which average 1.715 (3) 
A (six values, range 1.710-1.721) are typical of C—Cl dis­
tances found in many chloro-substituted olefins.35 

The short C—C and C—Cl bond distances, the planarity 
of the C3Cl3 moiety, and its orthogonality to the Ni—Ni bond, 
are indicative of a completely delocalized Ni2(^2-C3Cl3) 
fragment. One aspect of the bonding can be explained in terms 
of the modified Dewar-Chatt-Duncanson model36 used to 
describe the bonding in dinuclear acetylene bridged complexes 
where the C—C vector of the acetylene triple bond (and con­
sequently the -K electron cloud) is orthogonal to the M-M 
vector. In the [Ni2(CO)2(,u2-C3Cl3)(^2-Cl)2] complex the open 
three-carbon propenyl fragment C(1,2,3) with its x cloud is 
also positioned orthogonal to the Ni-Ni vector. However, this 
bonding rationale is not totally satisfactory since opening of 
the strained cyclopropenium ion results in a three-carbon 
fragment which possesses considerable electron density on the 
terminal carbon atoms, C( 1) and C(3). A more in-depth mo­
lecular orbital analysis is required to rationalize fully all aspects 
of the delocalized Ni2(M2-C3Cl3) bonding. 

The preparation and isolation of this novel perchlorinated 
propenyl cluster complex extends our current ideas of the mode 
of coordination of cyclopropenyl and propenyl species from 
those involving only one metal atom as enumerated previously 
to binuclear and possibly polynuclear types of metal 
interactions. The oxidative addition adduct [Ir(CO)Cl-
[P(CH3)3]2[C3(C6H5)3]] + cation7 where a four-membered 
iridocycle is formed serves as an example of a mononuclear 
precursor to the binuclear complex reported here. It also 
suggests that the use of halosubstituted C3X4 and C3X3

+ 

species may prove a fruitful synthetic approach into perhalo-
genated organometallic complexes. We are currently pursuing 
synthetic work to probe the utility of these ideas. 
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Sterically Hindered Isomers of Retinal from Direct 
Irradiation of the All-Trans Isomer. 
Isolation of 7-c/s-Retinal1 

Sir: 

WaId, Hubbard, and Brown established that the all im­
portant 11-m-retinal can be obtained by direct irradiation of 
the all-trans isomer in a dilute ethanol solution.2 In a steady-
state mixture, the amount of 11-cis was estimated to reach 25% 
of the combined isomer composition. They further showed in 
a simple and elegant experiment that from the photolysate 
all-trans, 13-cis, and 11-cis isomers can be isolated by frac­
tional recrystallization.2b To the vision researchers this pro­
cedure remains the most direct route to small amounts of pure 
11-m-retinal. 

The mechanistic details of the photoreaction have since been 
examined in great detail, but much confusion still exists. The 
product mixtures have been analyzed by UV spectroscopy,35 

thin layer chromatography (TLC),4 and more recently by high 
pressure liquid chromatography (HPLC),6 quantum yields 
determined under direct and sensitized irradiation condi-
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Table I. Direct Irradiation of all-trans-Retinai. Product 
Distribution and Relative Quantum Yield 

Solvent" 
Primary products 

(relative quantum yield)6 

350-nm Irradiation^ 

«-Hexane 13-cis, 9-cis (1:0.28) 
Ethanol 13-cis, 11 -cis, 9-cis, 7-cis (1:0.81:0.24:0.04) 
Acetonitrile 13-cis, 11-cis, 9-cis, 7-cis (1:1.9:0.70:0.27) 

440-nm Irradiation'' 

fl-Hexane 13-cis, 9-cis (1:0.25) 
Ethanol 13-cis, 11-cis, 9-cis, 7-cis (1:1.0:0.31:0.05) 
Acetonitrile 13-cis, 11 -cis, 9-cis, 7-cis (1:2.0:0.78:0.20) 

" Reagent grade solvents without further purification. * Less than 
10% of conversion. Average of three-five samples. Corrected for 
different absorbance of isomers at 254 and 360 nm.c Peak width 20 
nm. d Peak width 30 nm. 

t ions 3 6 and triplet yields by microsecond7 and nanosecond 
flash spectroscopy.5,8 The triplet yield of a//-7rans-retinal in 
nonpolar solvents (such as n-hexane) is higher than in polar 
solvents such as methanol, but the reported values range from 
0.5 to 0.7. The quantum yield of isomerization also appears 
solvent dependent, but again there is a large spread of reported 
values (e.g., in nonpolar solvents the quantum yield of trans 
to 13-cis varied between 0.04 and 0.2).3'6 Even the question of 
the formation of the 11 -cis isomer in alcoholic solvents appears 
to require further confirmation or scrutiny. Waddell et al.6 

reported that 13-m-retinal is the only photoproduct from a 
methanol solution of all-trans-retina\. However, they noted 
that WaId et al.2 carried out the experiment at a wavelength 
(>410 nm) different from theirs (350 nm); therefore the 
suggestion of a possible wavelength dependence of the isom­
erization reaction was made.6 One may add that certain aspects 
of spectroscopic properties of retinal are indeed wavelength 
dependent.9 

To this date there are no indications in the literature that 
the more hindered 7-cis isomers are present in the photo-
mixtures. Their absence could be considered consistent with 
the one time commonly held notion that such sterically 
crowded compounds are unlikely to exist,10 but, of course, four 
such retinal isomers have recently been prepared in our labo­
ratory." 

In conjunction with the study of the photochemistry of the 
hindered 7-cis isomers,12 we have reinvestigated the photo-
isomerization of a//-;ran5,-retinal in several solvents. In this 
paper we wish to report the portion of the results dealing with 
the formation of the hindered 11-cis and 7-cis isomers under 
direct irradiation. Some of the contradictory observations in 
the literature will be clarified and we will show that the pre­
viously unnoticed 7-cis isomer is present in the photolysate 
in sufficient quantities for isolation. 

First we conducted the study in the two commonly used 
solvents: hexane and ethanol. Acetonitrile was also used as a 
solvent. It was not employed in previous direct irradiation 
studies, although its use was recently described in a triplet 
sensitized study.6 

Irradiation was carried out on an optical bench equipped 
with a mercury arc lamp, a quartz lens, and a Schoeffel mo-
nochromator. Two different monochromator settings were used 
(350 and 440 nm). At a slit width of 2 n, the average half-
height width of the beam is 25 nm. Solutions were not deoxy-
genated.13 Product mixtures were analyzed by HPLC with two 
UV detectors at 254 and 360 nm. The peaks were identified 
by comparison with reported retention times14 and with those 
of authentic samples. 

Figure 1. HPLC chromatogram of a mixture of retinal isomers obtained 
from direct irradiation of the all-trans isomer in CH3CN. The peak with 
* was identified as being due to the 7-cis isomer (see text). Analytical 
conditions: Du Pont 830 Ic equipped with Waters ^-Porasil column and 
Varian VARICHROM detector (360 nm). 

The results summarized in Table I (after correction of dif­
ferent molar absorptivity of isomers at 360 nm) show that the 
initial product mixture in hexane is, as reported, mostly 13-cis, 
but in ethanol, in addition to 13-cis, 11-cis and 9-cis are also 
present in the initial product mixture at both wavelengths of 
irradiation. Furthermore, we noticed in the HPLC chro­
matogram (Figure 1) the appearance of a small peak. It never 
exceeded 1 - 2 % of the total product mixture but interestingly 
it has a retention time identical with that of the hindered 7-
cis- retinal. 

When acetonitrile was used as the solvent, we were pleas­
antly surprised to find that (1) the minor peak in ethanol now 
approaches 6% of the total product mixture along with an in­
crease of the amount of 11-cis and (2) the relative quantum 
yield of isomerization appears higher than in ethanol and with 
less degradation of retinal. The UV spectra of all product peaks 
were then recorded in the flow cell of the HPLC detector 
(Varian VARICHROM). First the spectra verified the as­
signment of the peaks corresponding to the 13-cis, 11-cis, and 
9-cis isomers; further the spectrum corresponding to the minor 
peak is, one may safely say, that of a retinal geometric isomer 
and not of an overirradiated product. The structure of this 
minor component was unambiguously assigned when a solution 
of 35 mg of trans-retinal in 35 mLof CH3CN was irradiated 
with light >400 nm (Corning 3-74 filter) and the product 
isolated by preparative HPLC separation.15 A total of 0.78 mg 
of the minor product was collected.16 Its 1H NMR spectrum 
(XL-100, in CDCl3) is identical with that of 7-n's-retinal:17 

5 1.52 (s, 18-CH3), 1.93 (s, 19-CH3), 2.31 (s, 20-CH3), 5.99 
(d, 7-H), 6.11 ppm (d, 8-H) (y7,8 =11 .3 Hz). 

The maximum amount of the 7-cis among all of the retinal 
isomers during the course of irradiation in ethanol (as deter­
mined by HPLC analyses) is <2%. This amount would not be 
detectable by UV or TLC methods, and even by HPLC with­
out authentic material its detection and identification would 
have been difficult. Therefore, it is not surprising that this 
hindered isomer was overlooked by previous workers. The 
reason why the 11-cis isomer was not reported to be a primary 
photoproduct6 is not immediately obvious to us. Our method 
of analyses (HPLC) is essentially that of Waddell et al.6 with 
the exception of the wavelength of detection. Waddell used 
exclusively the 350-nm beam while we used the 254- as well 
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as the 360-nm beam, the 254-nm beam being four times more 
sensitive for detection of 11-cis. Also Waddell et al. carried out 
their irradiation in methanol, while WaId et al. used ethanol. 
To check for a possible solvent dependence we irradiated a 
sample of all frans-retinal in methanol. Again all four mono-cis 
products were detected during the early stage of irradiation. 
The ratios of 11-cis and 9-cis to 13-cis are 0.56 and 0.19, re­
spectively (350-nm excitation), somewhat different from those 
in ethanol. Clearly our results show that 11-cis is formed in 
both alcoholic solvents and the results do not support the 
wavelength dependent explanation.18 

Although we have yet to carry out experiments to elucidate 
the mechanistic details related to the formation of the 7-cis 
isomer, some comments on excited-state intermediates based 
on the limited information now available are perhaps appro­
priate. The formation of the hindered isomers appears to be 
favored in solvents of high dielectric constant (in which retinal 
also has low intersystem crossing efficiency).8a-19 This is con­
sistent with possible involvement of singlet, zwitterionic in­
termediates, as those suggested by Salem.20 That the hindered 
isomers are formed along with 13-cis and 9-cis would further 
suggest that the twisted dipolar intermediates, once formed, 
do not interconvert. To confirm these tentative conclusions, 
and to have a better understanding of the solvent effect, more 
extensive studies with a large variety of solvents will have to 
be conducted. 
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